Empowering Grids – the EGEE

gLite middleware

Ludek Matyska

CESNET and Masaryk University
Czech Republic
This presentation is based on contribution from many gLite developers.
It uses pictures, numbers and sometime even whole slides from many other EGEE related presentations given at different fora.
Even if not explicitly referenced, all these information sources are highly appreciated.

Thanks to the whole JRA1 team.
• **Pre-history**
 – DataGrid, focused on the initial middleware development (EDG)
 – 3 years, from 2001 to March 2004
• **EGEE**
 – Production oriented, based on middleware development in DataGrid, EDG, LCG and initial gLite middleware
 – 2 years, April 2004 to March 2006
 – 71 partners, 27 countries, operation federated (ROCs)
• **EGEE II**
 – Full scale deployment, the gLite middleware
 – 2 years, April 2006 to March 2008
 – 91 partners, 32 countries, 13 Federations
EGEE Future

- **EGEE III**
 - Just to be submitted (September 20th)
 - 94 partners, 34 countries, 12 federations
 - Real production (LHC deployment in 2008)
 - Strong support for other applications
 - Computational Chemistry
 - Astrophysics
 - Bioinformatics and medicine
 - Earth Sciences
 - (Grid Observatory)
 - Continued middleware development and support

- **EGI (European Grid Initiative)**
 - Post EGEE future
 - Design Study project (Started September 1st)
• **Large-scale production quality e-infrastructure**
 – HEP the main user
 – But other communities actively looked for and supported

• **High-throughput production environment**
 – Emphasis on large number of CPUs, sites, and independently submitted and run jobs
 – Goals: Tens to hundreds thousands jobs per day on the whole infrastructure

• **Data intensive (data Grid)**
 – Able to process PB of data
 – Data catalogues, access methods, …
 – Low, medium and high security requirements
Scale of EGEE Service

No. CPU

No. Sites

No. jobs / month - all

98k jobs/day
• Brand name: gLite
• Production quality
 – Novelty less important
 – Must pass the real-use test
• Testing and Integration
 – Independent activity
 – Stay between development and operations
• Foundation Services
• Higher Level Grid services
• Security infrastructure
• Information system, monitoring and accounting
 – Information schema, simple resource discovery
 – Resource monitoring and notification interfaces
 – Accounting to provide appropriate aggregation and views
• Compute Element (CE)
 – Set of services to provide homogeneous secure access to heterogeneous computing resources
• Storage Element (SE)
 – Set of services to provide access to storage resources
 – SRM Interface
 – POSIX like I/O
Higher level Grid services

• **Job services**

 – **Workload Management System (WMS)**

 - Resource brokerage
 - Job Input and Output handling
 - Automatic resubmission and persistence
 - Job tracking – Logging and Bookkeeping service
 - Permanent job information – Job Provenance service

• **Data management services**

 – Reliable asynchronous file transfer system
 – File and replica catalogues
 – Secure data management
 – Data encryption
• **EDG middleware**
 - DataGrid project
 - Maintained by the LHC Computing Grid – LCG middleware
 - LCG releases up to 2.7 (2005)

• **gLite middleware**
 - EGEE projects
 - Overlap with the LCG, but independent up to version 1.5 (2005)

• **gLite middleware 3.0**
 - Merge of gLite 1.5 and LCG 2.7 (2006)
 - Production release in EGEE project

• **gLite 3.1**
 - Increased stability and throughput, released
gLite services

- **Security**
 - Authentication
 - Authorization
 - Accounting
- **Computing Element**
- **Storage Element**
- **Information and Monitoring**
- **Workload Management**
 - Brokerage
 - Logging and Bookkeeping and Job Provenance
- **Data Management**
 - File transfers, Catalogues, Replicas
• **Authentication**
 – PKI with X.509 certificates providing single sign-on
 – Maintained list of trusted CA (EUGridPMA, IGTF)
 – Use of short term proxy credentials (lower risk)
 - Proxy delegation, MyProxy,

• **Authorization**
 – Virtual Organizations (VO)
 - User must be member of at least one VO
 – Resources are “assigned” to VOs (negotiation, includes priorities, access policies, etc.)
 – VOMS (VO Management Service)
 - Attribute certificates, capability based authorization
 - “Attached” to proxy certificate
 - Authorization information stored in VOMS servers
Security - overview
Coming: Shibboleth SLCS

Long lived certificates may be replaced by short lived certificates provided by a Shibboleth identity Provider

Shibboleth IdP

Phase 1: Shibboleth enabled SLCS

Phase 2: Attribute transfer into VOMS

SLCS

short lived X.509
• **Abstraction of a computational resource**
 – Common set of interfaces/services for heterogeneous resources

• **Cluster a typical CE**
 – Head node
 – Several worker nodes (WN)
 – Single (local) batch system to dispatch jobs among WNs

• **Different realizations (interfaces)**
 – LCG-CE
 – gLite-CE
 – CREAM
• **LCG-CE**
 - Globus Toolkit version 2 GRAM service
 - Never ported to GT4
 - Deprecated

• **gLite-CE**
 - GSI-enabled Condor-C
 - Still needs some tuning
 - Phased out

• **CREAM**
 - WS-I interface (OGF-BES)
 - BLAH (Batch Local Ascii Helper) connector
 - Job management operations
 - Job status changes
Workload management system

- **Resource brokering**
 - Matchmaking: user requirements vs. grid state
 - CE selection
- **Workflow management**
 - Compound jobs
- **I/O management**
 - Takes into consideration also data resources
- **Additional features**
 - Persistency
 - Deep and shallow resubmission
 - Recovery from WMS crashes
 - Security
 - Proxy renewal
Supported job types

- “Normal” (batch like)
- DAG workflow
- Collection
- Parametric
- MPI
- Interactive

- Deprecated
 - Checkpointable
 - Partitionable
Real time job tracking

- Logging and Bookkeeping Service
 - Keep track of Grid jobs across components
 - Reliable and secure collection of events (non-blocking)
 - Multiple event sources (redundancy)
 - Capture job control flow
 - Provide job state information
 - Job state updated on new event arrival
 - Support user generated events
 - Secure
 - Mutual authentication of all components
 - Encrypted data transmission
 - VOMS based authorization
 - All data collected on LB server
 - Multiple instances (one job – one LB server)
Job Provenance

- Long term preservation of information about Grid jobs
 - Information on job control flow and execution environment complements actual job results
 - Based on data from LB, extended by input and sandbox, small output files, additional user annotations
- Architecture optimized for storage AND retrieval
 - JP Primary Server
 - One for several VO
 - Huge amount of raw data
 - Fast write
 - JP Index Servers
 - Many instances per JP PS (registration, support for >1 PS)
 - Provide “views” on data
 - Support for data-mining
- Assist job re-submission
Accounting

- Collection of data on resource usage
 - By VO, group or a single user
- Metering sensors on all resources
- Pricing – cost of use of resources
 - If enabled, market-based resource brokering
- High privacy
 - Access to data granted to authorized personnel
 - Information collected in GOC (Grid Operation Centre)
- Functionality provided by APEL
 - Uses R-GMA to propagate job accounting information for infrastructure monitoring
- Full support via DGAS
 - Complex architecture (site and central databases)
 - Used by INFN, gLite certification pending
• Abstraction of file storage
• Interface: SRM (Storage Resource Management)
 – Current version 2.2
• Handles authorization
• Various implementations
 – Disk based: DPM, dCache
 – Tape based: Castor, dCache
• POSIX like I/O (rfio)
 – GFAL (Grid File Access Layer)
Disk Pool Manager (DPM)

- Manages storage on disk servers
- SRM support
 - 1.1
 - 2.1 (for backward compatibility)
 - 2.2 (released in DPM version 1.6.3)
- GSI security
- ACLs
- VOMS support
- Targets small to medium sites
 - Single disks or several disk servers
- **LCG File catalogue**
- **Stores mapping between**
 - Users’ file names
 - File locations on the Grid
- **Provides**
 - Hierarchical Namespace
 - GSI security
 - Permissions and ownership
 - ACLs (based on VOMS)
 - Virtual ids
 - Each user is mapped to (uid, gid)
 - VOMS support
 - To each VOMS group/role corresponds a virtual gid
File Transfer Service (FTS)

- **Reliable data movement fabric service**
 - Performs bulk file transfers between multiple sites
 - Transfers are made between any SRM-compliant storage elements (both SRM 1.1 and 2.2 supported)

- **It is a multi-VO service**
 - Balance usage of site resources according to the SLAs agreed between a site and the VOs it supports

- **VOMS aware**

- **Secure**
 - All data is transferred securely using delegated credentials with SRM / gridFTP
 - Service audits all user / admin operations

- **Deployment**
 - Tier 0 at CERN (target 1GB/s 24/7 service)
 - Among ~10 Tier 1 centers and also Tier 1 – Tier 2 transfers
Encrypted data storage

- Request from medical community
- Strong security requirements
 - anonymity (patient data is separate)
 - fine grained access control (only selected individuals)
 - privacy (even storage administrator cannot read data)
- Solution based on many components:
 - image ID is located by AMGA (metadata management)
 - key is retrieved from the Hydra key servers
 - file is accessed by SRM (access control in DPM)
 - data is read and decrypted block-by-block in memory only (GFAL and hydra-cli)
Some statistics

- Stress tests performed by the HEP experiments
 - ATLAS and CMS
- gLite 3 with “standard” testing and certification procedure
 - Results not satisfactory for end users
- gLite 3.1
 - Closed loop between developers and users
 - Intensive work on started in 2007
 - Visible improvements
Requirements for the gLite WMS

CMS vs. ATLAS

<table>
<thead>
<tr>
<th></th>
<th>CMS</th>
<th>ATLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>50K jobs/day</td>
<td>20K production jobs/day + analysis load</td>
</tr>
<tr>
<td>2008</td>
<td>200K jobs/day (120K to EGEE, 80K to OSG)</td>
<td>100K jobs/day through the WMS; Using <10 WMS entry points</td>
</tr>
<tr>
<td></td>
<td>Using <10 WMS entry points</td>
<td>Using <10 WMS entry points</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><1 restart of WMS or LB every month under load</td>
</tr>
</tbody>
</table>
Based on the experiment requirements, some criteria have been defined to decide if the gLite WMS satisfies the requirements:

- At least 10,000 jobs/day submitted for at least five days.
- No service restart required for any WMS component.
- The WMS performance should not show any degradation during this period.
- The number of zombie jobs should be less than 0.5% of the total.
Results of the acceptance test

- **115000 jobs submitted in 7 days**
 - ~16000 jobs/day well exceeding acceptance criteria
 - The "limiter" prevented submission when load was very high (>12)
- **All jobs were processed normally but for 320**
 - ~0.3% of jobs with problems, well below the required threshold
 - Recoverable using a proper command by the user

- The WMS dispatched jobs to computing elements with no noticeable delay
- Acceptance tests were passed
Number of Jobs Error Breakdown: January to August 2007

StageIN
- gLite WMS: 22%
- Executor: 6.2%
- StageIN: 3.7%
- ATLAS SW: 0.6%
- Other: 0.0%

StageOut
- gLite WMS: 22%
- Executor: 7.7%
- StageOut: 6.1%
- ATLAS SW: 4.0%
- Other: 0.0%

Data Management: 36%
- gLite WMS: 36%
- Executor: 1.0%
- StageIN: 1.5%
- StageOut: 1.5%
- ATLAS SW: 0.8%
- Other: 0.0%

ATLAS SW: 8%
- gLite WMS: 8%
- Executor: 1.3%
- StageIN: 2.4%
- StageOut: 4.1%
- Other: 0.0%

The diagram shows the error breakdown for jobs in the LCG from January to August 2007, categorizing errors in StageIN, StageOut, and Data Management, with gLite WMS, Executor, and ATLAS SW being the main contributors.
Number of Jobs Error Breakdown:
July and August 2007

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>gLiteWMS</td>
<td>~13%</td>
</tr>
<tr>
<td>Data Management</td>
<td>47%</td>
</tr>
<tr>
<td>ATLAS SW</td>
<td>11%</td>
</tr>
</tbody>
</table>

gLite WMS category includes also site specific issues and problematic job distribution (with subsequent proxy expiration).
WallClockTime Error Breakdown:
January to August 2007

StageIN

stageOut

ATLAS SW

gLite WMS: negligible
Data Management: ~60%
ATLAS SW: 28%
The WMS in CMS data analysis

- CMS supports submission of analysis jobs via WMS
 - Using two WMS instances at CERN with the latest certified release
 - For CSA07 the goal is to submit at least 50000 jobs/day via WMS
 - The Job Robot (a load generator simulating analysis jobs) is successfully submitting more than 20000 jobs/day to two WMS
• **gLite middleware reached production quality**
 - Large scale deployment on an EGEE Grid
 - Hundreds of sites, tens thousands jobs every day
 - Scalability limits much higher
 - Multiple deployment of key services possible
 - File transfers at PB level already achieved (over half a year)

• **On-going performance tuning**
 - Closer collaboration between users and developers beneficial to fast development of high performing components
 - Experimental services approach

• **On-going reliability improvements**

• **Ready for use – new users welcome**