User friendly high level application support for EGEE/gLite

Jan Kmuniček
NA4 CE region coordinator
Central European federation (CE)

- regional descriptor: heterogeneity (in both partners & organizations)

- Austria
 - GUP, UNIINNSBRUCK

- Czech Republic
 - CESNET

- Hungary
 - MTA SZTAKI, NIIF, KFKI RMKI, ELUB, BUTE

- Poland
 - ICM, PSNC, CYFRONET

- Slovakia
 - II-SAS

- Slovenia
 - JSI

- EGEE II
 - regional newcomer: Croatia
• **VOCE - Virtual Organization for Central Europe**

 - provides *complete grid infrastructure* under EGEE wings

 - officially registered as currently the one and only “Regional VO” for Central European (CE) region

 - based on **regional principle**

 - VOCE spans the whole CE Federation
 - core services operated by CESNET
 - resources are provided by several institutions across the CE (these resources are available to all / experienced users registered in VOCE)
• **VOCE - Description**

 – **fully production environment**
 - VOCE environment allows Grid newcomers to get quickly first experience with Grid computing
 - simultaneously allows users to smoothly move to production use of the Grid in the same environment

 – **self-contained infrastructure**
 - all the relevant services run by VOCE administration
 - currently on LCG middleware but simultaneously available gLite 1.4 installation (undergoing task)
• **VOCE - Aims**

 - **incubator** for new applications / new application areas
 - assistance in adapting a software for use on the Grid
 - even for applications that do not have any Grid/cluster/remote computing experience
 - outsourcing the burden of running an grid infrastructure to VOCE

 - **generic VO**
 - VOCE is an application neutral virtual organization
 - *not bound to any particular application*
 - *interested in broad scale of application areas*
 - also suitable for training purposes (in cooperation with P-GRADE)
• **VOCE - Features**

 - comparison VOCE to GILDA VO

 ▪ **VOCE security**
 - no anonymous users (importance for resource owners)
 - based on accredited CA's approved by the EUGridPMA body

 ▪ **VOCE CA**
 - short-term certificates (days) dedicated for training purposes
 - users can access only limited group of available resources
 (it is up to the resources owners if they will provide resource also for training purposes utilizing only “training” certificates)

 ▪ **VOCE resources**
 - allocated guaranteed resources, not best effort approach
- **VOCE - Summary of resources**

<table>
<thead>
<tr>
<th>Computing Element ID</th>
<th>Site ▼</th>
<th>Free Slots</th>
<th>Total Slots</th>
<th>Max Run</th>
<th>ERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>grid109.kfki.hu:2119/jobmanager-lcgcondor-long</td>
<td>BUDAPEST</td>
<td>3</td>
<td>82</td>
<td>100</td>
<td>2-12:17</td>
</tr>
<tr>
<td>ares02.cyf-kr.edu.pl:2119/jobmanager-lcgpbs-voce</td>
<td>CYFRONET-LMG64</td>
<td>33</td>
<td>34</td>
<td>10</td>
<td>0-00:00</td>
</tr>
<tr>
<td>zeus02.cyf-kr.edu.pl:2119/jobmanager-lcgpbs-voce</td>
<td>CYFRONET-LCG2</td>
<td>10</td>
<td>78</td>
<td>10</td>
<td>0-00:00</td>
</tr>
<tr>
<td>ce.grid.tuke.sk:2119/jobmanager-pbs-voce</td>
<td>TU-Kosice</td>
<td>9</td>
<td>9</td>
<td>21</td>
<td>0-00:00</td>
</tr>
<tr>
<td>ce.egee.man.poznan.pl:2119/jobmanager-lcgpbs-voce</td>
<td>egee.man.poznan.pl</td>
<td>116</td>
<td>116</td>
<td>0</td>
<td>0-00:00</td>
</tr>
<tr>
<td>skuruti17.cesnet.cz:2119/jobmanager-lcgpbs-voce</td>
<td>prague_cesnet_lcg2</td>
<td>19</td>
<td>44</td>
<td>0</td>
<td>0-00:00</td>
</tr>
</tbody>
</table>

- resources from
 - CESNET (Czech Republic)
 - PSNC, CYFRONET, ICM (Poland)
 - II-SAS (Slovakia)
 - KFKI (Hungary)

- more than 40 registered users from 10 institutes and 4 countries

- in total **539 CPUs, about 5.9 TB disk space**
• VOCE - Advantages

 – regional self-organization

 ▪ users are not tightly bound around specific applications
 ▪ the region itself is self-organized from the bottom level

 resources … infrastructure

 applications … high level middleware

 ▪ potential users are not required to invest special effort
 to easy use the environment in a production mode

 – application neutrality
• **VOCE - Summary**

 – user registration

 – documentation

 – request tracking

 ▪ send requests to voce@cesnet.cz
Application support - CHARON

• **What is Charon?**

 ▪ uniform, and modular approach for (complex) computational jobs submission and management
 ▪ generic system for use of application programs in the Grid environment (LCG/gLite middleware, …)

• **Why Charon?**

 ▪ many various batch systems & scheduling components used in grid environment
 ▪ each batch system has unique tools and different philosophy of its utilization
 ▪ LCG/gLite provided tools are quite raw and simple
 ▪ many additional tasks to use computer resources properly
• Charon Extension Layer (CEL)
Module system

- manages application software

 - each software package is described by a specific module
 - configuration information is internally stored in XML format

 \[\text{name}[:\text{version}[:\text{architecture}[:\text{parallelmode}] alleged])]\\

 - find the architecture and parallel mode that best fit available computational resources
 - solve conflicts or dependencies between individual modules
 - list available modules sorted into categories
 - use pre-installed modules on WNs or install them on the fly if they are missing
Application portfolio

- currently supported programs from
 - computational chemistry and molecular modelling
 - AMBER, AutoDock, Turbomole, CPMD
 - numerical computations
 - Octave
 - visualizations
 - Grace, PovRay, Raster3D, Molscript

- planned programs to be ported (based on users feedback)
 - Abinit, Dalton, Gromacs
 - Corsika (astrophysics), image processing tools
Provided services

- Application areas
• **Charon system – Job Flow**

 - simplifies navigation through job life cycle to the maximum (critical added value especially for Grid newcomers)

 - in principle only **three simple commands** are needed for the complete manipulation with a computational job

 - compared to **GUI (portals)**
 - *higher flexibility in reconfiguration by user him/herself*

 - compared to **native CLI**
 - *smoother job management*
Application support - CHARON

- input

```bash
[jobdir]$ ls
equi.rst  isomaltose.top  myjob  prep.in
```

```bash
# sander calculation on VOCE
module add amber
sander -O -i prep.in \ 
  -p isomaltose.top \ 
  -c equi.rst -o prep.out \ 
  -x prep.traj -r prep.rst
```

Molecular Dynamics of Isomaltose
- psubmit

```
[jobdir]$ psubmit voce myjob
```

```
Job name : myjob
Grid job name : myjob (Job type: generic)
Job directory : skurut4.cesnet.cz:/home/kulhanek/jobdir
Job project : -none-

=====================================================================
Alias : -none-
Organization : voce
Profile : default

NCPU : 1
Resources : -job match-
Properties : -none-
Sync mode : gridcopy

=====================================================================
Start after : -not defined-

Do you want to submit job to GRID environment (YES/NO) ? YES

Please wait packing data ... 
Submiting job ... 

Job was successfully submitted to GRID environment.
```
Job name : myjob
Job ID : https://skurut3.cesnet.cz:9000/bx06C-R9mB5uquZarwpCPQ
Grid job name : myjob (Job type: generic)
Job directory : skurut4.cesnet.cz:/home/kulhanek/jobdir
Job project : -none-

Alias : -none-
Organization : voce
Profile : default

NCPU : 1
Resources : -job match-
Properties : -none-
Sync mode : gridcopy

Start after : -not defined-

Job was submitted at : 2005-10-12 14:16:28
and was queued for : 0d 00:04:28
Job was started at : 2005-10-12 14:20:56
and was running for : 0d 00:02:12
Job was finished at : 2005-10-12 14:23:08
• psync

[jobdir]$ psync

Starting synchronization procedure.
 downloading sandbox ...
 completing data ...
 downloading data from SE ...
 unpacking result archive ...
 cleaning ...
Synchronization was successfully finished!
Application support - CHARON

Molecular Dynamics of Isomaltose

output

```
[jobdir] $ ls
equi.rst  myjob.ces  myjob.stdout
prep.in   myjob.cesout
isomaltose.top myjob.jdl
myjob      myjob.info
prep.traj  myjob.rst
prep.out
```

input files

control files

results

```
0  0
-50  0
-100  0
-150  0
-200  0

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>time [ps]</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[-50,-100 ]</td>
</tr>
<tr>
<td>myjob.rst</td>
</tr>
</tbody>
</table>
```

INFSO-RI-508833

EGEE project is funded by European Commission (contract number IST-2003-508833)
Main features

- **Grid middleware neutrality, multi Grid approach**
- single job management
 - encapsulation of a single computational job
 - minimization of overhead resulting from direct middleware usage (no JDL file preparation, etc.)
 - easy submission and navigation during job lifetime
- application programs management
 - powerful software management and administration
 - comfortable enlargement of available application portfolio
- documentation
Application support - CHARON

• Issues to be addressed concerning CHARON

 ▪ licensed software
 • using ACLs at dedicated application software repository SE

 ▪ production of CHARON installer

 ▪ preparation of LightweightUI
 • future distribution of CHARON as part of a LightweightUI

 ▪ support for DAG jobs

 ▪ interconnection between EGEE / VOCE Grid (prototype utilization, guaranteed support) and local national grid environment (experimental utilization, best effort support)
• P-GRADE – GUI to access VOCE

 – basic facts
 • official portal to access VOCE infrastructure

 – main features
 • general purpose, workflow-oriented computational Grid portal
 • supports development and execution of workflow-based Grid applications
 • support for multi-grid workflows ⇔ multi-Grid approach
 • GridSphere based
 • easy to expand with new portlets (application-specific portlets)
 • easy to be tailored according to end-user needs
• P-GRADE – GUI to access VOCE

 - provided services

 ▪ easy-to-use workflow concept for solving complex problems
 ▪ fast development of Grid applications

 ▪ integrating various components into large Grid applications:
 • sequential codes
 • MPI codes
 • legacy codes

 ▪ application monitoring, performance visualization, guaranteed correctness
• **P-GRADE – GUI to access VOCE**
• ESR VO portal

 - **flood application** for forecasting floods using advanced technologies in computer science

 - flood application consisted from several components
 - numerical models for meteorology, hydrology, hydraulics
 - workflow and data management modules
 - visualization and collaboration modules
 - portal itself

 - built using generic portal components
 - portal framework together with management and collaboration modules are applicable for other applications
Regional middleware extensions

- CE software RPM repository at CYFRONET
 - apt/yum compliant
 - Read/Write access for local certification teams

- currently available packages
 - OCM-G application monitoring system
 - GLOGIN certificate-based shell access
 - MPICH-P4 tested at CYFRONET
 - flood application ongoing migration
• How to proceed further?

 – expand **computational resources** in VOCE

 – utilize VOCE / CHARON / P-GRADE **training infrastructure**

 – extend **application portfolio**

 – migrate towards new application-centric CE VO based on VOCE production experience (e.g. specific MMCC VO)